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USING BIWEIGHT M-ESTIMATES IN THE TWO-SAMPLE PROBLEM
PART 1: SYMMETRIC POPULATIONS
Karen Kafadar

Statistical Engineering Division
National Bureau of Standards
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ABSTRACT

We propose replacing the usual Student's-t statistic, which
tests for equality of means of two distributions and is used to
construct a confidence interval for the difference, by a
biweight-"t" statistic. The biweight-"t" is a ratio of the
difference of the biweight estimates of location from the two
samples to an estimate of the standard error of this difference.
Three forms of the denominator are evaluated: weighted variance
estimates using both pooled and unpooled scale estimates, and
unweighted variance estimates using an unpooled scale estimate.
Monte Carlo simulations reveal that resulting confidence intervals
are highly efficient on moderate sample sizes, and that nominal
levels are nearly attained, even when considering extreme

percentage points.

1. INTRODUCTION

The use of Student's t in constructing confidence intervals

for the difference in location of two populations is a common
practice. It is well known that this procedure is uniformly most

powerful unbiased when the underlying populations follow Gaussian
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distributions with the same variance (Lehmann 1959). When the

distributions are in fact even slightly stretched-tailed, however,

studies show that, while the Student's t interval nearly maintains X
its validity under the null hypothesis (Yuen and Dixon 1973, Lee

and D'Agostino 1976), the power may be substantially reduced (Yuen

and Dixon 1973). (More recently, see Benjamini 1980 for conditions

under which one-sample Student's t is conservative.) In order to

achieve "robustness of efficiency” in addition to “"robustness of

validity” (as defined in Tukey and McLaughlin 1963), this study .
proposes the use of biweights in a two-sample “t"-like statistic, '
which we shall call biweight-"t". The two-sample problem raises
the issues of combining information on scale of the data and on
variance of the numerator of biweight-"t". We shall attempt to
judge when such borrowing of scale information may be justified.
This report concentrates on small to moderate sizes of samples from
symmetric populations; the unsymmetric case is treated in a
forthcoming paper. Section 2 deals with the case of equal sample
sizes. Section 3 considers unequal sample sizes, for which
variance estimates may be weighted by their sample sizes. Section
4 examines the performance of biweight-"t" when the samples have
different scales. A brief comparison of biweight-"t" intervals
with other familiar procedures 1is made in Section 5, and Section 6

concludes with an example and strategies for the two-sample case.

2. EQUAL SAMPLE SIZES. 'y

2.1 Form of two-sample biweight-"t" and concepts. |

wen

i
Let Xl1seeesXng, j ~ Fij((x-uj)/oj), j = 1,2, denote samples i
from two symmetric populations. Then the two-sample biweight-"t j

takes the form:
"t"py = (T}-T2)/S
where each Tj is a biweight estimate of location and the squared
denominator estimates the variance of the numerator:

s2 = var (T,-T3).
For a definition of the biweight and its associated variance, the )
reader is referred to Mosteller and Tukey (i977). For a single
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sample, yj,sss,¥y, the only major difference between their
calculation of the biweight estimate of location and that used
here is in the choice of scale: 6°*MAD (median absolute deviation)
has been replaced by (6°syi), where
{U} = (U], «ve, up) = {(yg-median)/9+MAD}
spi’ = n*a({uch

i

aC{ug ) =

=~
[ 3c}=]

V2O /E ¥ (S0 ] max L1, -1+ T e (GO1E (D)
1 k=1 k=]

and the psi function is given by

¥(u) = u(l-u2)2 = uew(u) , lul <1
= 0 , else.

One then solves for T iteratively via the equation
= ¥ Y = Iyx - TD)/(6espi)]e (2)
= kélykw(uk k=lw(uk), uy lyk spill.

The iteration starts with the median and ceases when the change is
less than one part in the fourth decimal place. An estimate of the
variance of T may be obtained from a finite-sample approximation to

the theoretical asymptotic variance (cf. Huber 1981, p. 45):

Sp2 = var(T) = q({u}) (3)
where the {uy} are defined in (2). (The motivation for these
changes is discussed in Kafadar 1981, henceforth referred to as
[k81}.)

When we have two samples, we compute T and Sy for each sample.
If we denote these by Tj and Sj (j=1,2), our two-sample
biweight-"t" statistic then takes the form
"t = (T) - T)/(5)2 + sp2)1/2 (4)
The variance estimates sz will be weighted by sample size in
_ Section 3. In the remaining sections, we will drop the subecript
on "t“pi, as the form of "t" will always involve the biweight

estimates as defined above.

2.2 Evaluation criteria.

Performance of biweight-"t" will be evaluated on three
different distributions:

° Gaussian
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o One-Wild (n-1 observations from N(0,i).

1 unidentified observation from N(U,100))
o Slash (N(0,1) deviate / independent Uniform{0,1] deviate).
These three situations are likely to cover a reasonably broad range
of stretched~tailed behavior (Rogers and Tukey 1972).

Robustness of efficiency may be evaluated in several ways. In
this study, the success of biweight-"t" will be measured primarily
in terms of “"efficiency"” of the expected confidence interval length
(ECIL), i.e.,

eff(a) = [ECILgia(a)/ECILacpya1(a))?

where ECILactual(m) was defined by Gross (1976) as

ECILgcryal(a) = 2(a/2 %-point of "t")*ave(denominator of “t"),

and ECILpjn(a) is the shortest confidence interval we could expect
for the given situation at hand. For the Gaussian, these are, of
course, Student's t intervals, an approximation, derived in [K81],
is used for ECILyjn(a) in the One-Wild and Slash situations.

Furthermore, for practical ease of use, we wish to approximate
the distribution of biweight-"t" by one from a standard family of
distributions. The most likely candidate here is Student's t, with
some chosen number of degrees of freedom. This chosen number may
be determined by comparing the calculated percent point of "t" to a
Student's t table; i.e., the matching of ("t" critical point, a) to
(degrees of freedom). The critical points of the distribution were
all computed via a Monte Carlo swindle, the details of which may be
found in Kafadar (1979). The sets of samples were those used in
the Princeton Robustness Study (Andrews et al. 1972), each
simulated situation involved either 640 or 1000 samples of sizes 5,
10, and 20.

2.3 Asymptotic Distribution of "t".

That “t" of (4) has an asymptotic Gaussian distribution is
clear by the following argument: for the jth population,

al/2(t5-uy) -Ba Ni0, Eye2/(E5¥)2)

. N - 5 - AL WS ¥ (e
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where the subscript of E denotes the distribution; e.g.,
E ¥ = [¥2[(x-T])/(es})]dF)(x) (s)

for an arbitrary constant ¢ (e.g., c=6 in (2)). Hence,
nl/2((T)-Ty)-(uy-uz) 1 -2 N[O f E;¥2/(E;¥')2]
1-T2)=Cup-uz YIS b .

Since (cf. Carroll 1978) J
.g.2 D W2/ (E.¥")2
n SJ + EJW /(EJY')
we have by Slutsky's theorem that D
(T, ~To)=Cup-uz) 1/(5;24552)1/2 ==+ N(O,1). (6)

2.4 Borrowing Scales.

Since each of the biweights in the numerator and each of the
variance estimates in the denominator of "t” requires an estimate
of srale, we may consider a pooled estimate if we believe that both
samples have common scale. As shown in [K81], such a pooled

estimate in the one-sample "t" can substantially reduce the

variability in our results.

Table I gives the results of two-sample "t” when both samples

Table I ;
Biweight-"t" with pooled scales (F] = F2)
tail Gaussiar One-Wild Slash ]
arez ~=pt dar el 4-pt af elt A=pt [<§3 elt t
A) np=ny=20
.05 1.663 71.1 97.4 1.662 91.0
.025 2.002 57.9 97.3 1.996 67.2
.001 3.279 43.9 96.5 3.290 43,3
L0001 4,080 41,9 96.9 4.111 38.7
00001 4,813 41.4 97.1 4.894 36.8

* .05 1.692 33.3 93.7 1.693 32.7
.025 2.053 26.8 93.5 2.052 27.0
.00l 3.537 20.7 93.0 3.571 19.3
0001 4.546 19.9 93.4 5.054 16.9
00001 5.58F 19.6 93.8 5.955 16.0
C) nj=njy=5
.05 1.849 8.4 9l.1 1.769 13,2
.025 2,348 7.3 86,9 2.248 9.4
<001 7.267 4.0 34.5 6.483 4.5
.0001 16.658 3.6 13.5 16,326 8.7
.00001 25.061 3.9 1l.4 22.755 4.1
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have the same size and underlying distribution., (Additional
percent points are avallable from the author.) Both biweights in
the numerator have been scaled by syop, Where

spor = L(np+np) qC{ugy, uza})]1/2 o))

sj(O) = mgdlxij-Tj(O)l. Tj(O) = med Xj j

The subscript refers to a scale estimate which “"borrows” width
information from more than one sample.
Table I reveals extremely high performance for ny » 10, 1In

particular, the resulting confideance intervals for the Gaussian are

trivially less efficient than if we knew the true underlying
distribution (93% or higher) and are seldom more than 207 wider
than the minimum ECIL for any sftuation. Furthermore, we are
entitled to the full degrees of freedom in our approximation to a
Student's t distribution, across a broad range of a-levels.

To be conservative, we wight wish to approximate "t" by a
Student's t on nine-tenths of the nominal degrees of freedom (ndf =
n;+nj-2). For a > .0l and nj; > 19, the actual ertor rate is only
slightly smaller than the uominal (no less than 85% of the
nominal). As we go further into the tails, however, the actual
error iLates may be as low as 30% of the nominal (even lower for
Slash, n=10). While the robustness of classical prccedures for
extreme o-levels has not been investigated, a comparison with the
values in Lee and D'Agostino (1976) indicates that this procedure
is highly robust of validity at a« = .05, presumably this robustness

extends to the extreme a-levels as well.

2.5 Different distributions: separate scale estimates.

All three distributions in this study are derived from the
Gaussian with unit variance. This fact, however, does not imply
that a pooled scale {s appropriate when our samples come from
different populations, as Table I1(A) reveals. When our two

samples do not both have the same underlying distributional shape,

ECIL efficfency 1s still high, but the equivalent degrees of
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Table 1L
Biweight-"t"” with pooled and unpooled scales (F|#F3)

One-Wild, Slash

ZFpt

Gaussian, One-Wild Gaussian, Slash
Z=pt a1 Tt %Z=pt at etT

tail
area

A)

e

e

£7pt

Pooled Scales

—pt

ny=n2=20

1)

n)=np=10

2)

np=n2=5

3)

B) Unpooled Scales

9]

ny=ny=20

nj=ny=10

2)

freedom is low.

This not surprising, for (7) is designed to

A comparison of the distributions based

estimate a common scale.

on a different characteristic of width, such as a pseudo-variance

quantity, shows that the Slash is considerably wider than either
the Gaussian or the One-Wild (cf. Rogers and Tukey 1972).

The scale estimate (7) borrows from both samples and is used

In general, of course, we

in four places in our “"t"-statistic.

More importantly,

shall not know when we are entitled to borrow.

this pooled scale viclates the independence assumption in the
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only upon the consistency (not the dependence) of the scale
estimates in the numerator (T;-Ty). However, we shall be applying
this result to relatively swall sample sizes. While the dependence
between numerator and demoninator did not affect the efficiency of
a biweight-"t" in the one-sample problem (cf. (K81]), it is not
clear how the increased dependence in the numerator of "t" will
alter its distribution on finite sample sizes.

To illustrate the effect of eliminating this dependence
between the variables in the numerator, Panel B of Table II shows
the results based on unpooled scales. Curiously, despite the
incompatibility of scales in the Gaussian-Slash and Gaussian—One
Wild pairs, biweight-"t” with pooled scales gives higher ECIL
efficiency but slightly less degrees of freedom when n)=ny=20.
Overall, we could be fairly confident in a comparison of two-sample
"t" to a Student's t on 0.9(ndf), if we knew when and when not to
borrow.

One criterion on which to base a decision applies a weight

function to the logarithms of the scale estimates. This is
explored in Kafadar (1980); preliminary results on small sample
slzes are encouraging. Although formal tests of equal variances
are beyond the scope of this paper, one might decide to borrow on
the basis of the relative sizes of spj for the two samples., In the
absense of a formal test, overall we conclude that "t" based on
pooled scales allows roughly .9(ndf) for all but the extreme
a-levels, and roughly .8(ndf) for the unpooled case.

When ny=nj=5, degrees of freedom are substantially lower than
the nominal 3, and ECIL efficiency is often below 50%, even for the
Gaussian case, where the biweight typically performs well. An
axplanation for this 1is explored in [K8l]: the occasional presence
of one or more observations which receive zero weight will lead to
misleading estimates of scale, thereby affecting the distribution
of "t". For small samples, the distribution of "t" can be
characterized much more usefully by conditioning on the values of
the sum of the biweight weights. These conditional results will

not be shown here but are available from the author.
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3. UNEQUAL SAMPLE SIZES.

This case is treated separately, because of the dependence of

the varlance estimates on sample size in the denominator.

3.1 Asymptotic Distribution of analogous two-sample statistic.

If we believe that our biweights in the numerator have the
same variance, a common assumption in the usual two-sample
approach, we may wish to pool our variance estimates in a

“borrowed” (via mean squares) denominator:

V;r(Tl—Tz) = Sporl = [(n1+n2-2)-{§?j(nj-1)sj21(n1-1+n2-1). (8)
A borrowed-"t" then takes the form:J
"t"bor = [(T1=T2)=(u1=¥2)}/Spor - (9
In computing T; and §j in (8) and (9), one may (or may not) choose
to use a pooled scale estimate as in (7).

The denominator in (9) weights the estimated variances of the
statistics in the numerator according to the sample size. Such an
approach would not be reasonable if Var(T|) # Var(T;). For such
unequal variance cases, we consider separate estimates of the
variance in an unborrowed denominator {cf. Welch's approach to the
Behrens-Fisher problem, Welch 1938):

"t unbor={(T1-T2)=(u1-up) ]/ (5,2 + $,2)1/2 (10)
since the variance of the numerator may also be estimated by
2 =g,2 2
Sunbor S14+ Sp¢ . (11)

This distinction did not of course arise in Section 2, for then (8)
and (10) reduce to the same formula.

That the two forms of two-sample “t” do indeed have asymptotic
Gaussian distributions under the null hypothesis can be seen as

follows. Following the lines of the argument in Section 2.3, we

. know that

Up = g(Timup (Eg92/(Eg¥) 21712 s w0, 1= 1,2 (12)
where the notation for the expectations is defined in (5).
Furthermore, if F)=Fj, then the denominators in (12) are the same

for both samples, so
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02(ny,np) = [n)Cnj-1)8, 24np(np-1)552]/ (nj+np-2) -E-» E¥2/(E¥")2,
Hence, we have that "t"po, may be written
"t or = LQUI/VAY = Ua/¥ag)(ay~Lny=1y=1/ 20 | E¥ZT(E¥ )2/ a(n ), ny) 1
= (U O+n /) Y2 - uy(1+ag/ng) )1/ 2] [/EYZ/(E¥)2/0(n) np) ).
If nj+e and ng+= in such a way that nj/np » K < =,

[1+Cnp/n )72 > (148712, [14(a /ny)]"1/2 » (K/(1+K)1V/2

Hence, using Slutsky's theorem in conjunction with the convergence
in distribution in (12), we conclude that "t"p,. has an asymptotic
Gaussian distribution. 1f F} # Fp, then "t" gpor is appropriate,

for which the proof is similar.

H 3.2 Borrowing versus unborrowing: scales and denominators.

When we no longer have equal sample sizes, we might be
cdutious aad prefer not to borrow estimates of either scale or
biweight “"variance”. We know that such a cautious procedure may be
quite wasteful of valuable information, especially when one sample
has only five observations. On the other hand, biweight variances
need not be the same for all distributions, and unwarranted
borrowing in such cases may prove misleading. In this section we
investigate the effects of various borrowing possibilities.

For the sake of brevity and for eas2 of cowparison, we shall
limit our attention to the efficiency of biweight-"t” at a = .00l
as representative of the behavior of "t" over the range .00001 < a
< .05. Table 11l shows these results, where the denominator of "t"
is:

A) Spor, borrowed scales: “complete borrowing”;

B) Spor, unborrowed scales: “incomplete borrowing”,

C) Synbors unborrowed scales: "complete unborrowing”.

When the distributions are the same, there is nearly always
advantage to complete borrowing, as seen most dramatically when
both underlying densities are Gaussian. In these cases, we may

"woon

again approximate the distribution of "t" by a Student's t with the
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o Table 111 )
Matched degrees of freedom and ECIL efficiencies at a=.Ui}

tor two=sample biweight-"t": Unequal sample sizes(l)

complete incomplete completue

borrowin borrowing unborrowing nominal

HT"'ET? ) 3 dr T ) dt

\) ¥l = o (2)
G oluo G20 o,y Yot 300 94.45 17.4 85.11 28
Woluoow TP 92,0 2443 83.18 In.8 70007 28
S lu 8 2o 27,9 g 2.7 73.75 37.1 BUL 45 28
P N LV 95.7 1leu 85.78 Hed 58,24 13
ORI UD R O 73.9 Y.9 65,44 6.3 37.72 13
S 53 S 1V 13.7 38a.p a9 330,41 5.5 211.06 13
G 3 G20 ladl 95,2 l4e3 83,92 4.7 32.06 23
W3 W 20 a2 79.0 12.5 70.84 4,7 19.93 23
S 5 S 2u 1u.0 «27.3 Wel  419.14 5.5 211.06 23
B) Fi #F,

Gl W 20 40.1 90.4 30.2 92.82 17.7 84,23 28
G 15 2u o 92.1 ® 82.20 36.3 92.04 23
Woluo ¢ o200 23,3 91.0 2141 88.34 16.2 75.40 28
W oIl oy 20 » 82,3 © 73.43 4U.6 88457 28
S lu G 20 3.4 99.7 8.6 82.52 4.4 63.23 23
310 w20 9.0 99.9 9.1 33.94 16.9 6. 84 28
o3 W1y 13.9 87.38 10.7 78.16 6.6 59.28 13
G > s iv 59.0 77.1 53.2 64.57 ll.6 75453 13
Wb Gole 12,4 34,7 9.9 b7.34 6,0 35.29 i3
W2 s 1o 19.2 S04 28,1 33.78 9.8 52.83 13
S 5 ¢ lv 1.9 14.7 4.4 273,40 3.6 1u2,15 13
5 5 W I 1.9 11.5 4.0 267.82 3.7 1u3.87 i3
50> W 2U 27.6 92.4 13.9 80.67 4.7 32.10 23
G 5 s 2u © 8l.b @ 72.50 12.8 74429 23
W Gy 13,2 86.5 11.b 71.42 4.6 18.78 23
W 5 s 20 © 504 o0 56.30 11.8 48.96 23
S 53 6 2.0 38.2 4.6 489.44 3.1 73.52 23
S 5 w220 2.4 44.2 4.6 467.52 3.1 74.78 23

(1) Standard errors for critical points from which degrees of
freedom were matched and ECIL etficiencies were calculated fell
in the range 0.028 to 0.331 for a = .00},
(2} Fj represents underlying distribution for sample j:
7= Gaussian, W = One-Wild, S = Slash.
noninal degrees of freedow. When the distributions are the same, a
conservative matching would be 0.9(ndt). When one distribution is
.Slash, incomplete borrowing appears slightly more successful.
Finally, we remark _pnat there are some cases for which "t in
any of the three forms appears totally unsuccess.ul (e.g., n=5
‘SLash, with anything else). This is primarily due to the nature of
small samples: there is a chance (about 5% in the Gaussian) that
one or two bonafide observations will occur far enough away from
the bulk of the data so as to be inappropriately downweighted by

any reasonably robust procedure., When the smaller sample is
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restricted to be such that the sum of the biweight weights is high,
efficiencies on the biweight-"t" intervals are slightly higher than
those in Panel B. A solution may well depend on an appropriate use

of the weight distribution in these small samples.

4. UNEQUAL WIDTHS.

4.1 Unborrowed denominators.

When our samples have different scales, a Welch-like
unborrowed denominator of the form (11) is a safe (but conserva-
tive) approach. To evaluate the performance of biweight-"t" in the
presence of unequal widths, we multiply the observations of one of
the distributions by either v2 or 2, yielding "variance"” ratios
between 2 and 4. A moderate difference in scales was chosen to
provide some indication of the effect in practical applications.

In Table IV, we show some trials of "t"phor either when
F)#F2, n;=ny or when F)=Fj, n|#nj. (As in Table IIIL, only the
results for a = .00l are shown.) Notice that our previous matching
of the distribution to a Student's t on 0.8(ndf) for unpooled

scales would be conservative. This is similar to the conservative

nature of Welch's unborrowed t-statistic (e.g., as shown in Lee and
D'Agostino 1976, Welch 1938). Approximating the distribution of
"t"unbor by a Student's t on 0.9(ndf) instead, we see from Table IV
that the actual levels are still often less than half the nominal,
In terms of robustness of efficiency, however, ECIL efficiency
typically exceeds 50%.

As a final comment on the interval problem for samples of
varying widths, we mention the concept of transformation, a
familiar data analytic tool in such situations. When comparing
several batches of data, Tukey (1977, chapter 3,4) draws attention
to the importance of choosing a re-expression of the data for which
the amounts of spread are roughly the same across batches. Such
re-eXxpression may be useful in dealing with the “unequal variances”

problem of this section, For example, Anscombe's (1948) variance

stabilizing transformations of Poisson data have been shown to

produce more similarity in spread. The results of biweight-"t"
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Table ..
Matched de§rees.of treedom and ECIL efficiency
for biweight-"t" at a = .00l: “o;" # "oy
222 matched ECIL actual a (3)
EL(I) n Fr my Ty d.f, eff. Tominal a
A) F} =F)
G 9 6 20 2 «(2) 90,90  .341
G 10 G 20 4 © 92.46 .038
W 10 W 20 2 w 82.94 .379
W 10 W 20 4 » .33 .045
S 1o s 20 2 © 262.61 +255
S 10 S 20 4 o 208.25 <073
G 20 G 10 2 @ 46 469
G 20 G 10 4 - 56.07 .286
W 20 W 10 2 ® 62.26 .593
W 200 W 10 4 L 47.62 474
S 20 S 10 2 Ld 224.64 .177
S 20 S 10 4 L] 155.83 .030
B) F] # Fy

G 20 W 20 2 L4 91.21 .127
G 20 W 20 4 L 85.53 .007
G 10w 10 4 L 47.00 53
G 20 S 20 2 ® 57.22 +238
G 20 S 20 4 © 35.84 .038
W 10 S 10 2 L4 57.20 <307
W 1Q S 1Q 4 ® 35.60 .038

(1) Fj represents underlying distribution for sample j:
G'= Gaussian; W = One-Wild; S = Slash.

(2) Indicates that biweight~"t" distribution is shorter-tailed
than Gaussian.

(3) Actual a = P["t"p;> t.g(ndf)(.OOI)]; nominal a = .00l.

discussed in Sections 2 and 3 (perhaps even the completely borrowed

"t") may than be applied successfully to such re-expressed data.

5. COMPARISON WITH CLASSICAL AND NONPARAMETRIC INTERVALS.

Many practicing statisticians are reluctant to compute robust
estimators or are satisfied with distribution-free methods. Even
among users of robust methods, there has been disagreement
,concerning the efficiency of the biweight over robust estimators.

“wo

To compare the performance of biweight-"t” with Student's t, a

nonparametric and a Huber-type "t" interval, Table V presents the
‘results from a separate Monte Carlo study. For each rum, 1000
Gaussian or One-Wild samples of size 5, 10, or 20 were generated.
Subroutine HH from Andrews et al. (1972) computed the Huber

location estimate, and its standard error was estimated via (3) but
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where ¥(u) was replaced by

'i‘H(u) = u Iul < 1.5
1.5 ful > 1.5 .

Nonparametric intervals based on the Wilcoxon rank sum test are

described in Lehmann (1975). Student's t, Huber-"t", and biwcight

-"t" all used completely unburrowed denominators.

Table V reveals that Student's t is highly inefticient when
even one of the samples is mildly contaminated (Une-Wild, n=20),
biweight=-"t" intervals dominate the nonparametric intervails
(sometimes by as much as 4U%) as well as the Huber-"t" intervals.

A constant of c¢=4 was also run for the biweight;, efficiencies for

Table V
ECIL efficiencies for five different
"t"-confidence intervals

Student's  Wilcoxon  Huber Biweight Biweight
t k=1.5 c=6 c=4

G20 W20

a=.05 61.6 93.3 87.0 94.6 91.9

a=.001} 6l.5 90.0 75.8 90. 1 84.9

a=,00005 58.8 86.0 68.4 86.5 79.2
W10 W 20

a=,05 39.2 84.3 77.9 87.7 .4

a=.001 41.2 60.3 64.3 80.0 73.8

a=.00005 39.6 3441 58.3 75.0 .2
G 10 W20

a=.05 67.1 91.0 82.5 92.5 .

a=,001 65.5 84.8 69.3 82.2 75.3

a=.00005 62.0 68.2 64,2 74.3 .
G 10 W10

a=,05 48.9 86.0 80.1 89.8

a=.001 49.0 36.5 63.3 81.8 76.1

a=, 00005 46.9 36.6 56.1 75. .
G5 W10

a=,05 54.6 79.4 71.5 4.2 79.9

a=, 001 52.5 36.7 51.9 66.6 60.0

a=.00005 49.0 - 45.4 . 53.7
G353 W5

a=,05 36.9 27.8 62.3 8

a=,001 33.1 - 42,8 56.6 49,2

a=, 00005 30.2 - .9 43.0
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moderate contamination (<1U4) are only slightly lower than when
¢=6, The main message ls that a robust "t” interval can lead to

large gains in efficiency in long-tailed, symmetric situations.

6. AN APPLICATION AND CONCLUSIONS,

6.1 An Example for borrowed and unborrowed "t” intervals.

To gain some familiarity with the effect of borrowing seales
on biweight comfidence intervals, we calculate them for a set of
chemical measurements taken at the National Buredu of Standards.
These data cousist of the councentrations of polychlorinated
biphenyl (PCB) in a motor oil solution as determined by gas
chromatography (in units of milligrams per kilogram of oil). Each
sample includes ten peak-by-peak comparisons of the oil fraction
chromatogram with the chromatogram of a known staandard wixture.
The box plots of the data from four ampoules of solution are shown

in Figure 1., Notice that the underlying assumption of symmetry

CONCENTRATION (PPM)
-
3
1

i
I
Jok

FIG. 1. Box Plots of Data from PCB's in oil.
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does not seem unrealistic for these sawples, and that some outliers
are evident from ampoule 4.

While it appears that all four groups do not have a common
scale, one might reasonably borrow scales between batches 1 and 4.
1f we are interested in all 6 pair-wise comparisons at the 95%
level of confidence, each interval should be based on the 2.5%/6 =
+4%-point of the “t“ distribution (.9x18=16.2 d.f. for pooled
scales, .8x18 = 14.4 d.f. for unpooled scales). The pooled scale
(7) between ampoules | and 4 1s .988, from which biweights and
associated variance estimates may be calculated to give a
confidence interval of the form

(T} - T4) * t16.2(.004)(S)2 + 5,2)1/2
= (99.468 - 106.858) * (3.028)(.0706 + .176)}/2
= -7.390 * 1.504 = (-~8.894, ~-5.886).
(The corresponding Student's t interval, (-9.220, -4.026), is 1.7
times wider.) An unborrowed confidence interval ‘or the difference
between ampoules 1 and 2 is
(99.468 - 103.357) £ ty,, 4(.004)(.0706 + .587)1/2
= -3,889 t 2.493 = (-6.382, -1.396).
(Welch's (1949) unborrowed confidence interval, using the formula
for degrees of freedom on p. 295, is only trivially longer.) Com-
paring ampoules 2 and 4 gives a confidence interval of the form
(103,357 - 106.826) * t4.4(.004)(.587 + .213)1/2
= -3,469 t 2.749 = (-6.218, -0.720).
This last comparison illustrates the greater power in this
procedure over the classical Student's t interval (-6.203, 0.423),
which would not reject the hypothesis of a difference. (Had one
used a Welch interval, since the equal-variance hypothesis rejects
at level .10, it would have been even wider.)

These intervals do not represent the final data summary
because additional information on the measurement process permits
more accuracy in determining standard errors. For illustrative

purposes, however, this information has b n neglected.

6.2 Concluding comments for the two-sample case.

This study investigated the performance of a two—sample "t”

et O i e o A s e e et L ..

.
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statistic when classical sample means and variance are replaced by
their biweight counterparts. Although computationally more
difficult than Student's t, the popular use of computers makes this
disadvantage irrelevant. The primary advantage is that its
distribution can be well approximated by one from the Student's t
family, from which valid, yet efficient, confidence intervals for
the difference in centers can be made.

Appropriate scaling for biweight-"t" can be important. We can
choose to either pool estimates of scale (a wise move if in fact we
have common underlying situations), or use separate estimates
(slightly safer in cases of doubt). The distribution may be
matched to Student's t on .9(ndf) (out to .l%Z-point) in the former
case or .8(ndf) in the latter. In either case, the efficiency of
the procedure (in terms of relative length of the interval) is
upwards of 704. The same applies when nj#n;, if we weight the
variance estimates proportional to their sample sizes ("borrowed”

denominator). Small samples sizes (n=5) pose a problem only when

the underlying population is extremely heavy-tailed (e.g., Slash).

A few trials of unborrowed denominators were run in situations
where the samples did not have common width. For the most part,
the 0.8(ndf) matching is quite conservative; .9(ndf) could be
safely recommended for all but perhaps the most extreme percent
points (.01% and beyond). When the underlying situations have the
same width, we have better than 60% efficiency out to the .5%
point. When the situations are different (either in distribution
or in width) , the efficiency decreases with the increased
difference in the distribution (in terms of the "heaviness” of the
tails).

While further insight into the nature of the weight
distribution may sugggest refinements, present results indicate
that we may feel counfident in constructing two-sample biweight-"t"
intervals using tabulated Student's t percent points as outlined
above. A subsequent report will investigate the performance of

biweight-"t" when the underlying populations are unsymmetric.
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